
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

A pragmatic method for integrated modeling of
security attacks and countermeasures
Srdjan Pudar
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pudar, Srdjan, "A pragmatic method for integrated modeling of security attacks and countermeasures" (2007). Retrospective Theses and
Dissertations. 14567.
https://lib.dr.iastate.edu/rtd/14567

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14567?utm_source=lib.dr.iastate.edu%2Frtd%2F14567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A pragmatic method for integrated modeling of security attacks and

countermeasures

by

Srdjan Pudar

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Manimaran Govindarasu, Major Professor

Daji Qiao
Hridesh Rajan

Iowa State University

Ames, Iowa

2007

Copyright c© Srdjan Pudar, 2007. All rights reserved.

www.manaraa.com

UMI Number: 1443102

1443102
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ALGORITHMS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Related Work . 3

1.3 Foundations for Petri Net Attack Modeling Approach 6

1.3.1 Attack Trees . 6

1.3.2 Deterministic Time Transitions Petri Nets 8

CHAPTER 2. PETRI NET ATTACK MODELING APPROACH (PENET) 10

2.1 Formal Definition . 10

2.2 Defense Modeling . 12

2.3 Converting Attack Trees to PENET Model . 13

2.4 Coverability Tree Analysis . 13

2.5 PENET Time Domain Analysis . 16

2.5.1 Token Propagation Logic . 18

2.6 Performance Metrics for Time Domain Analysis 20

2.7 Most Likely Attack Scenario Discovery Using Time Domain Analysis 20

2.8 Evaluation of Survivability and Defense Strategies 21

2.9 Illustration of PENET Framework . 22

www.manaraa.com

iii

CHAPTER 3. PENET TOOL OVERVIEW 27

3.1 Introduction . 27

3.2 Features . 27

3.3 Using the PENET Tool . 28

3.3.1 File Operations . 28

3.3.2 Drawing and Editing Diagrams . 30

3.3.3 Firing Rules and Results . 33

3.4 Running Simulations and Result Analysis . 34

3.4.1 About Valid PENET Models . 34

3.4.2 Running Simulations . 34

3.4.3 Simulation Results and Analysis . 35

3.4.4 Security Evaluation of Survivability and Defense Strategies 37

CHAPTER 4. PENET TOOL DESIGN AND IMPLEMENTATION 39

4.1 Introduction . 39

4.2 Block Diagram of PENET Tool Architecture 39

4.2.1 XML modules . 41

4.2.2 PENET Model Data Structure . 41

4.2.3 Drawing Engine . 43

4.3 Implementation of the Time Domain Analysis Algorithm 44

4.3.1 Post-Simulation Analysis Implementation 45

4.4 Discussion of Challenges in Implementation of the PENET Tool 45

4.4.1 Complex Issues in Time Domain Simulator 45

4.4.2 Analysis of Algorithms Convergence and Complexity 47

4.4.3 Additional Limitations of Time Domain Analysis Algorithm 48

CHAPTER 5. CASE STUDY . 50

5.1 Model . 50

5.2 Analysis of Presented Model . 54

5.3 Results . 56

www.manaraa.com

iv

5.3.1 Time to root place . 56

5.3.2 Number of root goal compromises . 59

5.3.3 Number of subgoals compromised . 59

5.3.4 Effect of repair time . 59

5.3.5 Effect of arrival time . 59

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 61

BIBLIOGRAPHY . 64

ACKNOWLEDGMENTS . 67

www.manaraa.com

v

LIST OF TABLES

2.1 Parameter values for PENET model from Figure 2.4.b 24

2.2 Simulation results for PENET model from Figure 2.4.b 25

5.1 Description of Figure 5.2 with assigned parameters 55

www.manaraa.com

vi

LIST OF FIGURES

1.1 Morda assessment [10] process steps . 4

1.2 Attack tree representing simple DNS attack 7

1.3 Simple deterministic time transitions Petri net (DTTPN) 9

2.1 PENET constructs a) OR event b) AND event c) PAND event d) de-

pendence event e) arrival construct . 11

2.2 Token propagation in PENET model time domain analysis 19

2.3 Reflector routers attack pattern . 22

2.4 a) Reflector routers attack subtree converted to PENET model b) Re-

duced model for time-domain analysis 23

3.1 Main user interface window . 29

3.2 File menu of PENET Tool . 29

3.3 AND event shown in PENET Tool . 31

3.4 Right-click menu for selected place . 32

3.5 Right-click menu for selected transition 32

3.6 Editing transition firing rules and results 33

3.7 Sample PENET model diagram . 35

3.8 Simulation results for a sample model on Figure 3.7 36

3.9 Successful attack trace with tracked places shown in blue 37

4.1 Block diagram of PENET Tool internal structure 40

4.2 Block diagram of XML schema that describes PENET model 42

4.3 PENET model with an “anomaly“ . 46

www.manaraa.com

vii

4.4 PENET model with multiple ”anomalies“ 46

5.1 Establishing TCP connection using SYN message 50

5.2 PENET model for TCP SYN DDoS Attack 51

5.3 PENET Patterns a) Acquire relevant victim info pattern b) Compro-

mise network and/or resources pattern 53

5.4 PENET model of most likely attack scenario 53

5.5 Time to root place compromise for TCP SYN model 57

5.6 Number of root goal compromises for TCP SYN model 57

5.7 Number of subgoals compromised for TCP SYN model 58

5.8 Number of root goal compromises for TCP SYN model for variable

arrival time a1121 . 58

www.manaraa.com

viii

LIST OF ALGORITHMS

2.1 ATtoPENET(AT), Procedure for converting attack tree to a PENET

model . 14

2.2 CoverabilityTree(M0), Construction of coverability tree for Petri net

from [9] . 15

2.3 Attack scenario analysis . 16

2.4 PENET time domain analysis for single attack scenario 18

2.5 Iterative process for enhancing system survivability 21

www.manaraa.com

ix

ABSTRACT

In recent years, research efforts in cyber security have steadily increased as a result of

growing concerns for cyber attacks and also increasing trend in cyber attack incidents. One

of the important areas of research that is gaining importance is modeling of attacks and

countermeasures to quantify survivability and other security measures of interest. In this

context, on one extreme, attack trees model has received attention due to its simplicity and ease

of analysis, and on the other extreme, stochastic models have been advocated. While attack

trees model does not capture complex dependencies among events and also is not amenable for

modeling dynamic nature of the attacks and countermeasures, the fitness of stochastic models is

yet to be established as there is not sufficient evidence to show that attack and defense behaviors

follow some known distributions. With this motivation, a new attack modeling approach based

on Petri nets, called PENET, is developed in this thesis whose goal is to significantly enhance

the modeling power of attack trees. PENET introduces relevant concepts such as dynamic

nature of attack, repairability of a system, and the existence of recurring attacks. Moreover,

it attempts to find a balance between ease of use and representation power by providing set

of constructs, parameters, performance metrics, and time domain analysis of attack progress.

Time domain analysis produces valuable output such as time to reach the main goal and the

path taken by the attacker. This output helps to evaluate system survivability and defense

strategies. This approach is implemented as a software tool, called PENET Tool, which lets

users draw model diagrams of a given system through intuitive user interface, perform time

domain simulations and carry out security evaluations, and enable interactive ways to improve

the survivability of the system.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Background

With rise of cyber attack activities in recent years, more emphasis was given to research the

issues related to this phenomenon. One of such research efforts is modeling of cyber attacks

and countermeasures. Several modeling approaches have emerged in research community and

industry. In this context, most of existing approaches are based on two notable approaches,

one being attack trees, and second group of stochastic models.

As one of most popular modeling approaches with high impact, attack trees defined by

B. Scheneier [1] have been used to model attacker behavior with purpose of reaching some

compromise objective, such as system failure or root access. This modeling tool has proved

to be simple, easy to use and analyze results, but yet powerful in its modeling simplicity.

Beside modeling attacker behavior, attack trees have found similar use of modeling system

vulnerabilities and points of access. However, attack trees are limited to simple representations,

because of limited construct set and static nature. Our effort uses Petri net constructs to

augment and extend existing principles that are already proven useful in attack trees.

Attack tree structure heavily resembles to one of fault trees [11], and fault trees initially

consisted of simple constructs. Similarly, fault trees were extended with additional elements

such as dependency gate and priority AND gate that provide additional modeling capabili-

ties beyond initial fault tree set. Due to exponential distribution of events modeled by fault

trees, these additional gates can be converted to Markov chain representation, and analyzed

using standard techniques for solving stochastic Markov chains. Unfortunately, this analysis

approach cannot be used for purpose of extending attack trees because there is no evidence

that probability of attack success follows exponential distribution. Thus, this work proposes

www.manaraa.com

2

alternative analysis approach that does not imply stochastic nature of the events.

The purpose of our proposed approach, called Petri Net Attack Modeling approach (PENET)

is to provide intuitive modeling approach for modeling attacker behavior in vulnerable systems

in security sense, based on concepts of attack trees and modeling abilities of Petri nets. Second

purpose of PENET approach is to address issues present in attack trees and other attack mod-

els. For example, additional information for some events in attack tree model is often available

but useless due to limitations in modeling representation, yet attack trees suffer of imprecision

reflected by subjective assignments of values on its elements. This approach can be used from

modeling vulnerabilities of a single entity, to a whole enterprise level.

Structure of this thesis is as follows. Related research work is examined in following section.

Next, we provide quick overview of attack trees and Petri nets as both are basis of our approach.

Chapter 3 contains formal definition of proposed PENET approach and analysis methods.

Next two chapters are focused on PENET Tool, the software implementation of our approach.

Chapter 5 contains case study used to illustrate and simulate our approach. Finally, we provide

conclusion and future work.

The main contributions of this thesis are two-fold:

• Extending modeling capabilities of attack trees by using Petri net constructs in order to

significantly improve the analytical capabilities of attack trees, specifically by:

a) Addressing existing issues in attack trees such as limited representation power,

imprecision, and lack of defined defense modeling.

b) Introducing concepts of recurring attacks, defense modeling, and dynamic con-

structs.

c) Introducing an analysis approach that follows attack execution in time domain.

d) Providing means to evaluate system survivability and defense strategies.

• Developing software tool that implements new approach and establishes its practical use.

www.manaraa.com

3

1.2 Related Work

Since attack tree incursion, significant research effort has been made to find application

for them, and to expand attack trees to new meaningful models. One of most prominent uses

of attack trees is in Mission-Oriented Risk and Design Analysis (MORDA) [10] methodology

developed by US National Security Agency. This methodology, shown on Figure 1.1, uses

attack trees in its process steps. The 10-steps process starts with identification of items that

are important in the process, namely system, adversary model, relevant missions, impact of

successful attack, and attack objectives. Acquired information is then used to build attack

trees that define attack space against which the system must defend. Last steps in this process

involve analysis of attack tree model, assessments, and finally practical action. Assessment

involves evaluation of risk based on attack tree analysis results, and sensitivity analysis of

input data. Finally, defense strategies can be employed based on completed assessment.

Fung et al. [4] provides attack tree of MANET network with intrusion goal to compromise

Confidentiality, Integrity, and Availability (CIA) of critical channels containing key informa-

tion. Using service oriented architecture (SOA), authors analyze system and develop the attack

tree model that represent such SOA system. This work adds notion of survivability to attack

trees. Survivability analysis finds the system components susceptible to attacks an analyzes

their ability to survive the attacks. Based on attack tree, authors deduct intrusion scenarios

and provide quantitative values that determine which scenario has the lowest difficulty from

attacker standpoint.

Bistarelli et al. [5] introduce defense aspect in attack trees and additional quantitative

metrics such as return on investment (ROI) and return on attack (ROA). Defense trees are

attack trees extension that incorporate counter-measures used to address intrusion attempts

on leaves of attack trees. Higuero et al. [3] apply attack tree modeling to a case of digital

content security. Authors illustrate attack scenarios and provide analysis based on various

quantitative values that characterize attacker and attacker’s threats. Attack patterns were

introduced by Moore et al. [8] as a way to reuse generic segments or whole attack trees for

applicable contexts. Authors show how to apply generalized attack tree scenarios such as buffer

www.manaraa.com

4

overflow to their particular case study. The re-usability factor is very important in application

of attack tees.

Figure 1.1 Morda assessment [10] process steps

Attack trees are just one of many modeling approaches addressing security. Most of these

approaches were derived from existing methodologies used to model dependability and reliabil-

ity. Nicol et al. [12] provide overview of dependability and security modeling methods through

a taxonomy and motivate for further research in this area. These modeling approaches can

be divided to combinatorial, such as attack and fault trees, and stochastic, such as Markov

chains and Petri nets. Authors conclude that there is merit for using stochastic techniques in

attacker behavior modeling, but that significant additional work is required in order to create

new model-based framework.

Further, Dalton et al. [2] provide conversion of attack trees to generalized stochastic Petri

nets (GSPN) and perform steady state analysis of resulting GSPNs. Conversion methodology

is based on Petri net equivalent models for AND and OR event gates commonly used in attack

trees. The PIPE tool [13] was used to analyze derived Petri nets. McQueen et al. [19]

introduce compromise graphs. The goal of their work is to quantify risk reduction estimation

in a SCADA control system from cyber risk perspective. Quantitative risk model is defined

by risk of undesired event that takes into account probability and consequence of undesired

www.manaraa.com

5

event. Compromise graph is directed graph with nodes as potential attack states and edges as

successful compromises. Values on edges are expected time to compromise that are defined as

functions. As a main measure of system security and risk, authors used time to compromise

for base and enhanced systems. Also, authors recognize dominant attack path as a path with

minimal time to compromise.

Other approaches use stochastic models to describe systems. These models are commonly

converted to Markov chain, and analyzed using steady state transition matrix which contains

desired system metrics. Madan et al. [7] use dynamic state diagram to describe behavior of

intrusion tolerant system. This generic state diagram is a semi-Markov process model that is

further solved using embedded discrete time Markov chain (DTMC). Advantage of this work is

that presented generic model can be reused for specialized security attacks. The quantitative

analysis of model produces two useful metrics, steady-state availability and mean time to

security failure (MTTSF). Similarly, Sallhammar et al. in [6] develop stochastic model for

security and dependability evaluation. Their approach uses game theory to model attacker

behavior, as expected attacker behavior is driven by cost to perform attack and reward for

successful attack. In this stochastic model intrusions are modeled as transitions between system

states. Some system states are vulnerable to malicious faults, and game theory can be applied

to these states.

In [14], McDermott introduces attack nets that are derived from attack trees and Petri nets.

Attack net is a Petri net with states that represent point of security interests, and transitions

that represent events. Unlike other approaches that follow attack tree approach, this model is

intended for penetration testing. This model has capability to show how collection of seemingly

unrelated flaws can have larger consequence for a whole system.

In conclusion of related work, we find that stochastic models promise strong modeling power

that is lacking in attack trees. Unfortunately, due to fact that attacker behavior does not follow

any of known distribution functions used in stochastic models, we cannot use stochastic models

with defined probability distribution to develop precise attack model. However, other useful

attributes of stochastic models can be used. Our approach, which detailed description follows

www.manaraa.com

6

in next sections, will try to find compromise between modeling power of stochastic models and

simplicity of attack trees.

1.3 Foundations for Petri Net Attack Modeling Approach

1.3.1 Attack Trees

Attack trees are designed for the simplified evaluation of system security, often on the

enterprise system level. Attack trees offer methodological means to analyze security of the

system, such as its strengths and weaknesses with regards to intrusion attempts.

The principle of work of attack tree is simple and intuitive. Attack tree consists of three

parts: root, leaves and sub-tree components. Root describes access or achieveability of primary

goal, or compromise of desired system or a significant system module. Leaf nodes describe at-

tack attempts as indivisible simple actions. Sub-trees are used for description of dependence

of its children for achieving the upper goal. Sub-tree components can be AND and OR events.

AND nodes describe the all dependence, meaning that all children are required to be com-

promised by attacker in order for that component to be compromised. Similarly, OR nodes

describe that it is sufficient for one children to be compromised in order to compromise that

sub-tree. Sample attack tree is shown on Figure 1.2.

Once attack tree model has been created, designer can associate values for each of its

leaf nodes. The values can be of quantitative or qualitative nature. Choice whether to opt for

quantitative or qualitative values depends on the ability to define reasonable values and desired

precision level of the outcome. Most commonly used values are probability and monetary cost

of attack, and they can be both qualitative and quantitative. The values can be determined

by further researching attributes of particular attack that is represented by that leaf node.

For example, assume that one leaf node describes attacker utilizing existing vulnerability on

victim’s internal DNS server, as shown on attack tree example in Figure 1.2. This event

can be described by its statistical likeliness measured in percents. In this example, the value

is found by examining the vulnerabilities of machine that allow server to be remotely taken

over to better estimate the likeliness of this event. Similarly, we can associate cost for taking

www.manaraa.com

7

Figure 1.2 Attack tree representing simple DNS attack

advantage of such vulnerability.

Common attack tree analysis methods include finding selected value (often probability or

cost) at root node, or performing attack scenarios analysis. Attack scenarios [4, 3], are sets of

minimal combinations of enabled leaf nodes that lead to root access. For attack tree on Figure

1.2 there are 20 attack scenarios, each consisting of one leaf of left sub-tree and one leaf on

right sub-tree. Attack scenarios can be used for finding various additional information such as

the lowest cost attack and highest chance of success attack. Often attack trees contain custom

additional parameters on leaves, and analysis can focus on them as well. An example of such

parameter is required skill for performing an attack.

1.3.1.1 Weaknesses of Attack Trees

When modeling system using attack trees, often additional information about modeled

system is available, but limited modeling capabilities of Attack trees cannot take this valuable

information into account. This can result in a model that is less precise than optimal model

of a different approach, that manages to fully utilize input information.

www.manaraa.com

8

Assigning values to leaves is crucial for accurate analysis. However, this assignment is often

crude and subjective due to fact that many unknown variables influence assignment of values.

This leads to distorted outcome of the analysis. This subjectivity and inability to find precise

values is one of biggest weaknesses of attack trees.

Because of simple modeling approach, attack trees can only present static model of system

security and attacker behavior. In addition, limited constructs of attack trees fail to model

dependability between events and existence of sequencing events. If system changes through a

time, or new vulnerabilities appear, the original attack tree will be no longer valid. Thus, the

static model is valid only for a limited time.

1.3.2 Deterministic Time Transitions Petri Nets

Petri nets are often used for various system modeling due to their ability to model various

systems on a relatively high level, especially when compared to Markov chains. Petri nets are

used in modeling and evaluation of system dependability [12], multiprocessor system perfor-

mance evaluation [17], and modeling manufacturing systems and processes, but not limited

to above listed. In this thesis, we focus primarily on a specific variant of Petri nets, called

deterministic timed transitions Petri nets (DTTPN).

The definition of deterministic timed transitions Petri net is derived from basic definition

of Petri net. DTTPN [9] is a 6-tuple (P, T, I, O, M0, τ) where (P, T, I, O, M0) defines Petri

net as 5-tuple of five sets: places P, transitions T, input functions I that define arcs from

places to transitions, output functions O that define arcs from transitions to places, and initial

markings M0.

In a simplified notion, transitions ti on DTTPN can fire after specified time delay τi. In

a formal sense, τ is function that associates these time delays to each transition on DTTPN.

Additionally, we will assume that some transitions are immediate, in other words time delay

τi = 0 for some transitions.

Figure 1.3 shows simple DTTPN. This net consists of four places (P0 to P3), two timed

transitions (T0 and T1), and tokens in places defined by initial marking M0 = (1, 1, 0, 0).

www.manaraa.com

9

Figure 1.3 Simple deterministic time transitions Petri net (DTTPN)

After time τ0 token is present in place P1.

Often we will use notion of color to regulate firing requirements for a transition. In these

cases, some places will generate differently colored tokens. Then transitions can require tokens

of different colors in order to fire. Such nets are commonly called colored Petri nets (CPN) [9].

Other variant of Petri nets, named stochastic timed Petri nets [9] are commonly used for

system modeling. Some variants of these nets such as stochastic Petri nets (SPNs) and general-

ized stochastic Petri nets (GSPNs) assume exponentially distributed firing time for transitions.

For security modeling purposes, this assumption does not hold due to lack of evidence that

attacker behavior can be modeled by exponentially distributed time delay. Instead of using

such function for time delay on transitions, we used transitions with constant delay time. Thus,

DTTPN were chosen instead of stochastic Petri nets for our modeling approach.

www.manaraa.com

10

CHAPTER 2. PETRI NET ATTACK MODELING APPROACH

(PENET)

2.1 Formal Definition

In previous section, we provided overview of existing deterministic timed transitions Petri

nets (DTTPN) that are used as a basis for our modeling approach. Our approach can be

interpreted as an modification of attack trees using Petri nets as modeling tool. The goal of

PENET is to provide alternative to attack Tree modeling that addresses mentioned weaknesses

found in attack trees.

Our approach uses loosely defined DTTPN as a modeling tool. PENET model is a DTTPN-

alike net with defined set of constructs and specific times associated with each transition. Places

P represent attackers places of interest, subgoals and main goal; similarly to concept of node

employed in attack trees. Transitions T represent time delay needed for attacker to compromise

next goal. Places with token represent sub-goals that attacker has managed to compromise.

Main goal of attacker is represeted by root place, at which attacker has accomplished his goal.

Formally, PENET model is a 8-tuple (P, T, I, O, M0, A, C, R) where:

• (P, T, I, O, M0) carry same meaning as in DTTPN definion and are used to build

constructs of PENET approach.

• Parameter set (A, C, R) that replaces time delay τi in DTTPN definition with time

delays ai, ci, and ri.

We introduce three time delays used in PENET transitions: periodic arrival, compromise,

and repair times. Periodic arrival time ai models cost that incurs to attacker for each attack

attempt to some goal. Compromise time ci models time delay needed to accomplish particular

www.manaraa.com

11

Figure 2.1 PENET constructs a) OR event b) AND event c) PAND event
d) dependence event e) arrival construct

goal targeted by attack attempt. Repair time ri models repair response when victim notices

that some system module has been compromised. Thus, instead of single parameter, often

probability used in attack trees, we provide finer modeling with three introduced parameters.

Constructs in PENET can be static and dynamic. Static constructs are AND and OR

gates inherited from attack trees. As their name implies, they are used to model sub-system

that can described by static structure. On other hand, some attacker behavior in a system

cannot be described with such static modeling approach. As mentioned before, notions of

sequential events and dependency between events cannot be modeled using attack trees. In

www.manaraa.com

12

these situations dynamic constructs of PENET approach find their use.

The common attack tree OR and AND gates are simply converted to PENET approach

[2]. OR and AND gate models with any number of input children events are shown on Figure

2.1. The structure of these constructs is intuitive; for OR construct token will be present on

top place if any transition fires. In case of AND construct, tokens must be present on every

incoming place in order for transition to fire and bring token to top place.

PENET approach introduces dynamics in the model of the insecure system. In this sense,

Petri nets are good choice as they provide various constructs for modeling dynamic behavior of

a system. Thus, any construct represented by Petri net can be used in PENET approach. This

provides additional degree of freedom to designer, as designer can develop new constructs that

suit the particular application. In this work, focus will be given to two such constructs, priority

AND (PAND) and dependency constructs. These gates are commonly found as extension of

fault trees into Dynamic Fault trees [11], and they proved to be useful in modeling of even

simple attack models.

Priority AND gate (Figure 2.1.c) models sequential nature of multiple events. This con-

struct defines that events must occur in specified order, from left to right. Dependency gate

(Figure 2.1.d) models dependence of an event upon prior occurrence of another event. The

difference between these two is that dependence construct does not require strict sequencing

between dependant and controlling event, only that controlling event has occurred. Arrival

construct [18] from Figure 2.1.e models consecutive attack attempts that occur after attack

has failed on some higher level, and attacker has to start from beginning. Factor k models

maximum number of tokens that can be present at arrival place.

2.2 Defense Modeling

Although quantitative and qualitative metrics of attacker behavior provide values necessary

for modeling, notion of defense modeling is mostly left out in existing research models. Unlike

defense tree constructs in [5], most other attacker modeling approaches ignore repairability

and defensive aspects of a vulnerable system. Most systems are repairable, both during critical

www.manaraa.com

13

failure state and intermediate failure states. This concept is widely used in system reliability

modeling using repair rate µ. In our context of modeling attack behavior, this means that

compromised modules could be repaired, if attacker does not move to higher level goal in a

timely fashion. When this happens, attacker is forced to start over from some lower level place

or from the start, leaf place. Repairability of a place is represented by introduced parameter

ri.

2.3 Converting Attack Trees to PENET Model

As mentioned earlier, some known information about system and attacker cannot be fully

utilized by attack tree constructs. Attack trees can be converted to an equivalent PENET

approach model. During this process it is desirable to include omitted information that will

augment the model. PENET approach has ability to improve attack tree design using Petri net

constructs and additional parameters that describe the known information. These constructs

and parameters were introduced in PENET definition.

Algorithm 2.1 lists procedure for conversion. Conversion consists of several stages. In first

stage, leaves are converted to initial places with arrival construct. In second stage, all OR

gates are converted to their corresponding PENET model (Figure 3). In next stage, AND

gates of attack tree are examined to determine whether they match priority AND or regular

AND construct of PENET approach, and then converted to the appropriate one. Next, whole

tree is examined for presence of dependencies that are not shown on attack tree. Finally, time

delays are assigned to PENET model using existing attack tree quantitative or qualitative

values and additional information that was obscured by attack tree design.

2.4 Coverability Tree Analysis

Coverability tree analysis is the first of two provided analysis methods for PENET approach.

This method is similar to attack scenario analysis introduced in [4]. This analysis is useful for

finding attacks of interests such as the most likely attack. The coverability analysis is common

analysis method for all Petri nets [9]. First step in this analysis is to construct coverability

www.manaraa.com

14

Input: Attack tree AT
Output: Corresponding PENET model
Assign leaves to places1

Convert OR gates to equivalent model2

Convert AND gates to PAND or AND model3

Find dependencies and connect them to rest of net4

Assign arrival ai, compromise ci, and repair ri times5

Algorithm 2.1: ATtoPENET(AT), Procedure for converting attack tree to a PENET
model

tree.

The procedure for finding coverability tree from [9] is presented in Algorithm 2.2. Based

on initial marking M0, new markings are explored until there are no more markings left to

be found. Repair places and transitions can be ignored for coverability tree analysis. Once

coverability tree has been constructed, all paths that lead from initial marking M0 to markings

Mr that are associated with root of PENET tree are of interest for further analysis. These

paths are labeled with APi.

Consider all markings paths APi from initial markings M0 to root place in PENET net

representing main attacker goal. For purpose of construction of full coverability tree it was

assumed that all at leaf places have initial marking. Generally, not all initial markings are

necessary to achieve root place, because not all transitions from leaves to root are enabled.

Thus, set of all APi consists of two subsets, subset of mutually independent markings paths and

subset of dependent markings paths that are extended with optional leaf places that are not

necessary. For example, OR constructs require only one fired transition, so each OR construct

generates multiple markings paths, and only ones with single input transition enabled are

independent. Thus, list of independent marking paths APi’ represent attack scenarios.

For i -th attack scenario APi’, with number of leaf nodes ni, Total Attack Scenario Cost

DCi and Total Attack Scenario Chance of Success DPi can be calculated:

DCi =
ni∑

j=0

ACj (2.1)

DPi =
ni∏

j=0

APj (2.2)

www.manaraa.com

15

Input: Initial marking M0

Output: Set of all markings Mi

Label the initial marking M0 as the root and tag it “new”1

while “new” markings exist do2

Select a new marking M.3

if M is identical to a marking on the path from the root to M then4

then tag M “old” and go to another new marking.5

end6

if no transitions are enabled at M, then7

tag M ”dead-end.”8

end9

while there exist enabled transitions at M do10

foreach enabled transition t at M do11

Obtain the marking M’ that results from firing t at M.12

On the path from the root to M if there exists a marking M” such that13

M ′(p) ≥ M”(p) for each place p and M’ 6= M”, i.e. M” is coverable, then
replace M’(p) by ω (infinity) for each p such that M ′(p) > M”(p).
Introduce M’ as a node, draw an arc with label t from M to M’, and tag14

M’ ”new.”
end15

end16

end17

Algorithm 2.2: CoverabilityTree(M0), Construction of coverability tree for Petri net
from [9]

Note that number of leaf places ni varies for each attack scenario i. Index j in equations

(2.1) and (2.2) denotes leaf places that are part of particular attack scenario i. In equation

(2.1) arrival cost ACj represents monetary equivalent to periodic arrival time parameter aj .

The mapping between time delay aj and cost ACj is intentionally left out to allow for custom

mapping that is specific to the modeled case. For example, every arrival time can be multiplied

with some constant value k [$/hour]. In equation (2.2) chance of success APj represents

probability equivalent of compromise time parameter cj . The mapping between probability

and compromise time is again left out to the modeler. Example of one such mapping is

presented in case study in chapter 5.

Finally, Attack Scenario Index DIi combines left sides of equations (2.1) and (2.2):

DIi =
DCi

DPi
(2.3)

www.manaraa.com

16

Attack scenario index is a single quantitative measure of cost and success probability of an

attack scenario. The attack scenario with lowest Attack Scenario Index DIi represents attack

with best price to performance ratio from attacker perspective. Such attack scenario offers

the attacker highest impact for the lowest investment. From victim perspective, such attack

scenario can be considered as most likely one. Similar index is employed in [5] and called

Return on Attack (ROA). The complete procedure for finding the most likely attack is listed

in Algorithm 2.3.

Input: Initial marking M0

Output: Most Likely Attack Scenario
Construct the coverability tree1

Acquire all markings paths APi that lead to root place2

From APi acquire independent markings paths APi’ that represent attack scenarios3

Calculate values DCi, DPi, DIi for each attack scenario4

Analyze attack scenario with lowest DIi index value5

Algorithm 2.3: Attack scenario analysis

2.5 PENET Time Domain Analysis

Second analysis method for PENET approach fully utilizes novelties of our model, such as

delay times ai, ci, and ri assigned across the model. The benefits of PENET approach can be

seen from proper time domain analysis. In this analysis, all constructs and parameters will

influence the outcome.

To make the analysis more comprehensible, in this work we will assume that attacker will

take route of most likely attack, for which attacker has highest ratio between success probability

and invested resources. This path was found using coverability tree analysis method. In

general, PENET model with all leaves enabled can be analyzed, without any difference in the

procedure. Algorithm 2.4 specifies procedure for performing time domain analysis. Assumed is

that PENET model of system is available, along with parameters that quantitatively describe

the model.

Algorithm simulates attacker progress in time domain taking into account PENET struc-

ture described by various constructs and parameters. First step in algorithm execution is

www.manaraa.com

17

initialization where leaf places that are part of attack scenario are being recognized and their

time delay values assigned (steps 1, 2 in Algorithm 2.4).

To keep track of token arrivals at various places in various time points, priority queue

PQ stores sorted list of events evt that contain information about occurrence time τ , place of

arrival P, and required tokens R leading to transition being fired. Token table TT contains

information of token arrival and departure at each place. Every token has its own unique ID.

Priority queue and token table are created in steps 3 and 4.

Next step is to generate initial periodic events at every place i that is part of attack scenario

based on arrival times ai and maximum simulation time. These events are stored in priority

queue PQ (step 5). Note that every event represents token arrival at some place.

After initialization has been completed, execution reaches main while loop (step 6). This

loop contains two parts. In first part, steps 7 to 17, current event is being evaluated for

validity, based on whether required tokens for current event are found. If all required tokens

specified by requirements req are not found, then event is discarded, and algorithm continues

with next event in priority queue. If requirements req are met, then token table TT is updated

to reflect arrival of new token, and departure of tokens that caused firing (steps 14, 15, and 16

in Algorithm 2.4)

In second part, algorithm evaluates if current event can lead to new firings. When token

arrives at some place, it could enable firing on multiple new transitions. However, as soon

as one of such transition fires, token is no longer available for other transitions. Algorithm

handles this situation by generating events for each transition that potentially can fire and

setting event requirements req to include individual token ID. Later, when each event is due,

algorithm checks whether all firing requirements are still met. The event that has earliest start

time will consume the token, and render all other potential events invalid, which is desired

outcome.

Algorithm ends when there are no events left, or when simulation time expires.

Beside analysis for single set of values of each parameter, time domain analysis can be

performed for a range of values of specific parameters of interest, usually ones that victim or

www.manaraa.com

18

Locate all leaf places that belong to attack scenario1

Assign ai times on leaf places, ci times on transitions, and ri times where available2

Create priority queue PQ(evt) that stores events evt(P, τ , REQ) consisting of place3

and time of event, and event requirements
Create token table TT(P, τ1, τ2, ID) that stores tokens per places and interval of4

their presence
Assign periodic token arrival time events τi for all enabled leaves i, with period5

equal to arrival time ai and queue events in PQ
while simulation end time is not reached and PQ is non-empty do6

Dequeue first event event in queue PQ7

if event is token arrival then8

Verify that all requirements req for this event are met9

if not then10

ignore event and continue11

end12

end13

Declare token arrival time τk1 at place k of event14

Declare departure times τx2 for all places x in event evt requirements req that15

lead to this token arrival
Update token table TT with values τk1 and τx216

Determine what transitions connected to place k can fire17

foreach such firing do18

Create event evt for new transition and queue it into PQ19

end20

Update time to first event in PQ21

end22

Algorithm 2.4: PENET time domain analysis for single attack scenario

attacker have some degree of control. The influencing parameters could result in different level

of penetration, or in different time spent to reach the main goal. In a nutshell, the analysis

process is the same. Regular analysis procedure from Algorithm 2.4 is performed for every

value of parameters. This parametric simulation will be explored in remaining sections.

2.5.1 Token Propagation Logic

At each place i, single token arrives as a result of some transition being fired on time τi1,

and leaves on τi2. Time τi2 is determined by outgoing transitions with compromise time ci

that could lead to new compromises (different place), or to a repair place regulated by repair

time ri. Due to periodic nature of arrival times, multiple tokens could be present at any place.

www.manaraa.com

19

Figure 2.2 Token propagation in PENET model time domain analysis

Figure 2.2 illustrates the token propagation for a simple case of AND construct. Assumed

is that places i and j have single token. In this particular case, token will be in place k for

interval [τk1, τk2] determined by:

τk1 = max(τi1, τj1) + cij (2.4)

τk2 = τk1 + min(ck, rk) (2.5)

In other words, single token will go to repair place or next compromise place depending

whether new compromise takes more time than repair does. There will be two events generated

for arrival of token at place k and its departure. If there are multiple tokens available, tokens

will in general case distribute to both compromise and repair places.

General case equation for token progress cannot be specified because of existence of non-

deterministic Petri net constructs. However, our PENET approach with current set of con-

structs does not include any non-deterministic constructs. Similar to AND event case, equation

can be established for OR event when single tokens are present in both input places:

τk1 = min(τi1, τj1) + cij (2.6)

τk2 = τk1 + min(ck, rk) (2.7)

Remaining PENET constructs have trivial token progress.

www.manaraa.com

20

2.6 Performance Metrics for Time Domain Analysis

Performance metrics provide additional quantitative information about PENET model and

survivability of a system modeled by it. These metrics are suitable for comparing effectiveness

of various attack or defense strategies for a given system. Usually these strategies manipulate

value of some parameter that is controllable by attacker or by victim. Thus, efficacy of strategy

change can be evaluated using these performance metrics:

• Time to reach root place provides time in hours from attack start to compromise of the

root goal.

• Number of intrusions accomplished at root place specifies how many times attacker was

able to compromise root goal within given time interval of attack.

• Number of subgoals reached specifies number of subgoals compromised out of total number

of subgoals in PENET system. This goal is suitable for situations when root goal was not

reached, but some of subgoals were reached. Smaller value reflects more effective defense.

This parameter loses its meaning if it is not applied to PENET model that models the

single attack scenario.

Values for each metric are obtained by performing time domain simulation of the PENET

model, and analyzing contents of token table TT described in Algorithm 2.4.

2.7 Most Likely Attack Scenario Discovery Using Time Domain Analysis

Time domain analysis can be used to determine most likely attack in a dynamic sense.

Recall that coverability tree analysis uses static, attack tree alike model to obtain most likely

attack scenario. However, for different set of parameter values, victim can expect different

most likely attack scenario. By performing time domain analysis, if token is present on root

place, we can create attack scenario that has led to root. In this case, all leaf places that are

necessary for compromise at root place belong to most likely attack scenario AP.

www.manaraa.com

21

2.8 Evaluation of Survivability and Defense Strategies

Creating PENET model that precisely models the system is not end result of the PENET

approach. Based on results of simulation, new steps can be taken towards enhancing the

system survivability. In this sense, primary parameters that describe survivability, defense

effectiveness, or some other desired defense descriptor are performance metrics that will be

provided as a result of time domain simulation. Algorithm 2.5 lists procedure for improving

survivability. Survivability can be improved by tweaking some parameter(s) of PENET model,

or adding new defense constructs. Then, time domain simulation is re-ran for each tweak, until

performance metrics are improved to the desired level.

This iterative process is compliant to process proposed in Morda methodology [10], pre-

sented on 1.1. Steps in Algorithm 2.5 are similar to 10 steps of Morda methodology. Both

processes result in improved countermeasures based on analysis of attacker behavior and risk

assessment.

Obtain relevant information of attacked system and components1

Develop PENET model of system or attacker behavior2

Assign the values to parameters in PENET model3

Recognize parameters and other items of interest4

Run time domain simulation for parameter set, either on selected attack scenario or5

on whole PENET model
Evaluate and validate cyber security and survivability using output from the6

simulation
if not satisfied with output then7

Process changes that potentially improve system survivability or other desired8

metric
Go back to step 5;9

else10

Perform final steps11

end12

Algorithm 2.5: Iterative process for enhancing system survivability

www.manaraa.com

22

Figure 2.3 Reflector routers attack pattern

2.9 Illustration of PENET Framework

To illustrate our approach, consider Attack subtree on Figure 2.3 that is an attack tree

pattern [8] used in our case study discussed in the next section. This attack subtree can be

easily converted to a PENET approach model, as is shown on Figure 2.4. For simplification

reasons, arrival constructs (Figure 2.1.e) were not shown, but denoted with arrival time ai at

each leaf. Notice that AND root node (marking 1.2.2) becomes Priority AND event when

converted. From description of this attack it can be concluded that three leaf events have

to occur in sequential order from left to right, but this information could not be captured in

existing attack tree.

The PENET model of this pattern consists of four leaf places, one OR construct at place

1.2.2.1, two PAND gates with compromise times c1222 and c1223, and root place labeled with

1.2.2 goal. Parameters include arrival times for each leaf event ai, compromise times for each

transition ci, and repair times ri for all leaf places.

Arrival constructs model periodic nature of attack attempts that reoccur after attack has

been stopped because of repair efforts or timed-out attack. The formal representation adds

unnecessary clutter that can be avoided by proper notations. Similarly, repair transitions end

“in air”, representing that token is being lost after successful repair. Sequential constructs on

www.manaraa.com

23

Figure 2.4 a) Reflector routers attack subtree converted to PENET model
b) Reduced model for time-domain analysis

www.manaraa.com

24

Table 2.1 Parameter values for PENET model from Figure 2.4.b

Place / Value 12211 12212 1222 1223

Cost of arrival AC [$] 100 100K 100 100K

Chance of success AP 0.1 1 0.001 0.1

transitions c1222 and c1223 require tokens from two different places in order to fire. To separate

these tokens, introduced is notion of colored token, so for transition c1222 to fire both red and

blue tokens need to be present on 1.2.2.2 place.

Figure 2.4.a shows initial PENET converted model. Because of OR event at 1.2.2.1 place,

there are two attack scenarios. First scenario uses places 1.2.2.1.1, 1.2.2.1, 1.2.2.2, 1.2.2.3 to

reach 1.2.2 goal, and second scenario differs in first leaf that becomes place 1.2.2.1.2. In order

to come with most likely attack scenarios, values need to be fed into equations (2.1), (2.2) and

(2.3). These values are assigned in table 2.1.

Thus, for first attack scenario total attack scenario cost and chance of success are

DC1 =
2∑

j=0

ACj = AC12211 + AC1222 + AC1223 = 100.2K$

DP1 =
2∏

j=0

APj = AP12211 + AP1222 + AP1223 = 10−5

Finally, Attack Scenario Index for this attack scenario is

DI1 =
DC1

DP1
=

100.2K$
10−5

= 10.02M$

Similarly, for second attack scenario

DC2 =
2∑

j=0

ACj = AC12212 + AC1222 + AC1223 = 200.1K$

DP2 =
2∏

j=0

APj = AP12212 + AP1222 + AP1223 = 10−4

DI2 =
DC2

DP2
=

200.1K$
10−4

= 2.001M$

From these values, it can be concluded that second attack scenario is more likely, due to

having lower overall index.

www.manaraa.com

25

Table 2.2 Simulation results for PENET model from Figure 2.4.b

Parameter a Goal Time to accomplish Token count

value [hours] accomplished top goal [hours] on top goal

2 122 goal 24 8

4 122 goal 28 4

6 122 goal 34 2

8 1222 sub-goal N/A 0

10 1222 sub-goal N/A 0

Next, time domain analysis can be performed on most likely attack scenario. Before that,

the number of variables can be reduced by taking advantage of relations and properties of

them. First, we recognize that

a1223 ≥ a1222 ≥ a12212

due to fact that events described by these arrival times are in sequential order, so arrival time

of later events cannot be shorter than of events that precede it. In a worst case from victim

perspective, sequential attacks will arrive as soon as they can:

a1223 = a1222 = a12212 = a

Thus, all arrival times can be replaced with a single parameter a. Similarly, we can assume

that repair time is constant within same sub-system, and modeled with single parameter r.

Remaining parameter c denotes likelihood of attacker ability to take advantage of vulnerable

machines (place 1.2.2.2). This simplified model is shown on Figure 2.4.b.

Table 2.2 shows results of PENET time domain simulation for various values of parameter a.

The simulation was performed using simulator specifically developed for this purpose. Simula-

tor is based on time domain analysis procedure from Algorithm 2.4. Beside variable parameter

a, other two parameters have assigned values: repair time r = 8 hours, and compromise time

of c = 10 hours. Run time for generation of attacks was set to 40 hours.

From Table 2.2 it can be concluded that more frequent attacks saturate repair capabilites,

decrease time to accomplish root goal, and increase number of root goal penetrations. Another

www.manaraa.com

26

interesting scenario worth mentioning is when compromise time is increased to c = 100 hours.

This change could represent higher difficulty to penetrate more secure system. In this case, for

parameter a value of a = 4 hours, the best attacker could do is reach 1222 sub-goal at time τ

= 4 hours.

www.manaraa.com

27

CHAPTER 3. PENET TOOL OVERVIEW

3.1 Introduction

PENET Tool is a software implementation of introduced Petri Net Attack Modeling ap-

proach. PENET Tool was designed with a purpose to establish practical use of described

attack modeling effort through a single and comprehensive software tool. This purpose can

be translated to set of objectives translated to desired features: ease of use, ability to use

graphical interface to draw and edit diagrams, and ability to perform time domain analysis

and calculate performance metrics. Special attention was given to post-simulation features

that are of special value to end-user. These features assist user in a vulnerability assessment,

evaluation of defense strategies, and provide interactive tools to improve security of the system.

Secondary objective of PENET tool is to use established software engineering practices

such as object-oriented design in order to ensure quality of software and sound design.

PENET Tool was completely written in C# .NET using Visual Studio 2005 as a develop-

ment environment. It requires .NET 2.0 framework [21] to run. Because of these requirements,

it is not suitable for operating systems other than Microsoft Windows.

Primary audience of this tool is individuals and organizations who want to use our approach

in vulnerability evaluation of cyber attacks and developing defense strategies for their systems.

Secondary audience is research community desiring to learn more about attacker behavior

modeling and PENET approach.

3.2 Features

PENET Tool is a graphical user interface (GUI) application that provides one-stop utility

for designing, testing, and evaluating attack models using PENET approach.

www.manaraa.com

28

PENET Tool features diagram editor, file management tools, export and printing tools,

integrated time domain simulator, and post-simulation tools. In most cases, these features are

driven by user interaction.

Diagram editor provides means for drawing and editing elements and constructs of PENET

attack model. Editor allows user to add new items, edit properties of exiting items, remove

items, and move their position on the diagram. These features will be described in full detail

in following sections.

File management operations support operations with model files, such as opening and

saving files using Windows built-in interfaces, and converting XML files [22] to PENET repre-

sentations.

Export and printing features support imaging and printing operations. PENET Tool is

capable of printing diagrams and creating bitmap files from visual representation of a diagram.

Built-in simulator is based on implementation of PENET time domain analysis algorithm.

It performs time domain simulations for a given PENET model.

Post-simulation analysis module performs presentation of simulation results in a fashion

that is helpful for evaluation of system survivability and defense strategies. Defined perfor-

mance metrics are utilized for this purpose.

PENET Tool is distributed using its installer for Microsoft Windows. Installer allows users

to install PENET Tool as they would any other Windows application.

3.3 Using the PENET Tool

Figure 3.1 shows main user interface window of PENET. At user’s disposal are drawing

area, toolbar and menu bar, status bar and right- click menu.

3.3.1 File Operations

Basic file operations can be accomplished using File menu. Such operations are performed

usually on a single PENET model.

www.manaraa.com

29

Figure 3.1 Main user interface window

Figure 3.2 File menu of PENET Tool

www.manaraa.com

30

Currently, users can create new diagrams that represent PENET models, and perform var-

ious essential operations on existing diagrams: opening, saving, exporting current diagram to

an image file, and printing. Figure 3.2 shows File menu items, where all file-related operations

are stored. Most of these options are available on tool’s main toolbar as well.

3.3.2 Drawing and Editing Diagrams

Drawing and editing can be defined as a set of operations related to manipulations of

diagrams that represent PENET model. In a nutshell, PENET model is a deterministic time

transitions Petri net (DTTPN) [9] with specific parameters, but it follows almost all rules of

timed Petri nets. Thus, diagram editor is basically a Petri net graphical editor with additional

set features focused on supporting PENET models.

Built-in diagram editor is a crucial selling point of our tool. From drawing perspective,

diagrams consist of places, transitions and links that connect them into a single model. Places

are presented as circle-alike objects. Every place requires unique name, and might have optional

token arrival information, in a case of a leaf place. Transitions enable firing - movement of

tokens from one place to another. In PENET tool, as well as in traditional timed Petri nets,

transitions are either immediate or timed. Immediate transitions are shown with black filled

rectangle and represent zero firing delay time. In PENET model, transitions can be either

compromise or repair transitions, based on whether they lead to further attack or repair state.

Place, Trans., and Arc on toolbar and main application menu are provided for adding

these basic elements. Drag-and-drop interface is implemented for adding all elements. User

selects desired element on toolbar, and when mouse button is released on desired location on

the drawing space, new item is dropped there. As already mentioned, arcs connect place and

transition, and they can be added only between one place and one transition. After Arc is

selected on toolbar, two mouse clicks within selected objects will draw link between them.

Figure 3.3 shows basic construct of PENET model, AND event, drawn using PENET Tool.

There are three places (P0, P1, and P2), and one immediate transition (T0), as well as three

arcs that connect immediate transition with three places.

www.manaraa.com

31

Figure 3.3 AND event shown in PENET Tool

As it can be seen on Figure 3.3, some places such as P0 and P1 contain additional infor-

mation on the diagram. The label [Black, 10] means that this place regularly generates single

black token every 10 time units.

There are multiple ways to edit existing items on a diagram. On Figure 3.4 selection

sensitive right-click menu is presented. In this particular case, Place P1 is selected, and right-

click menu allows general actions and few actions specific to places only, such as Set Token

Arrival Data and Set As Root Goal. Thus, every place can have two unique characteristics:

token arrival data and whether it is a root goal or not.

When transition is selected, selection sensitive right-lick menu changes to operations re-

flecting transitions, like on Figure 3.5. Beside various Set actions, user can rotate transition

for better fit on the diagram, and edit firing rules and results. Edit Firing Rules and Results

action opens new windows as shown on Figure 3.6. These rules determine requirements for

firing particular transition, and output of successful firing. Every transition must have defined

requirements and rules for whole PENET model to be valid.

Diagram menu item that is part of main application menu bar is also selection sensitive,

www.manaraa.com

32

Figure 3.4 Right-click menu for selected place

Figure 3.5 Right-click menu for selected transition

www.manaraa.com

33

Figure 3.6 Editing transition firing rules and results

and shadows presented actions available on right-click menu.

Beside crucial features such as adding and editing items, diagram editor contains additional

features: moving, resizing, removing items, smart connect, and grid alignment. Moving feature

provides ability to move any individual place or transition, or a collection of them. Similarly

works remove feature. Resize allows any place or transition to be resized. Smart connect

ensures that arcs connect places and transitions, but not two places or two transitions. Grid

alignment aligns manually placed places and transitions to invisible grid points. See Item

Details action provides read-only access to properties of a selected object.

3.3.3 Firing Rules and Results

Firing rules are set of rules that are required for transition to fire. Firing results are

specification of output of a successful transition fire. Figure 3.6 shows firing rules and results

for a transition T0 on Figure 3.5. As it can be seen from figure, for T0 to fire, both input

places P0 and P1 have to contain at least one token: gray token in place P1 and black in

www.manaraa.com

34

place P0. The output of such firing is one black token to all output places, in this case single

place P2.

When places and transition are connected with arcs, PENET Tool tries to recognize firing

rules that enable transition, and firing output of it. However, this is not always possible due

to presence of tokens of various colors in incoming and outgoing places. Thus, it is necessary

to review firing information using Edit Firing Rules and Results action in any non-trivial case

that involves multiple colors.

3.4 Running Simulations and Result Analysis

Next logical step in PENET Tool use is running time domain simulations on created PENET

model diagrams. PENET Tool incorporate time domain analysis algorithm that is used for

running simulations and later results analysis. Simulations can be performed on valid PENET

models.

3.4.1 About Valid PENET Models

Valid PENET model satisfies few requirements. Although simulations can be ran on invalid

model, unexpected and unpredictable behavior may incur. First, there should not be floating

elements, such as unconnected places or transitions. Second, no immediate transition shall have

input and output at the same place. This would result in an infinite loop in the simulator.

Next, there should not be any loops solely consisting of immediate transitions. Transition

times should have non-negative values. And finally, firing rules on transitions should match

places connected to them.

3.4.2 Running Simulations

There are two essentially same ways to run simulation. Simulation menu of main appli-

cation menu bar contains Run Simulation and Run Simulation from File action items. For

former, this will invoke simulation of PENET model currently opened in diagram editor. For

later, user will be prompted to navigate to desired PENET diagram file.

www.manaraa.com

35

Figure 3.7 Sample PENET model diagram

Default simulation run time is 40 hours (or time units!), which represents time in which new

token arrivals at leaf nodes are being generated, and this value can changed using Simulation

menu. However, actual simulation will last until there are events in queue left to execute, or

until another threshold, maximum simulation time is reached.

3.4.3 Simulation Results and Analysis

To illustrate this subsection, we will use sample PENET model diagram like on Figure 3.7.

Figure 3.8 shows Simulation Results window that will be invoked once simulation of diagram

from Figure 3.7 is completed. This screen consists of four sections. First section provides input

parameters information such as arrival and compromise time delays for places and transitions.

Second section shows contents of token table for each place in the PENET model. Token

table (TT on Algorithm 2.4) shows each token that was present at a particular place. These

entries on each place are separated by token color. Third section shows attack trace of a

successful attack. Attack trace consists of tokens and places that were instrumental for attack

to succeed. Last section contains performance metrics associated with simulation results.

These performance metrics were defined earlier in PENET approach definition.

Beside simulation results window, trace is visually shown after simulation, like on the

Figure 3.9. Places that were part of successful attack are filled with light blue color. Trace is

www.manaraa.com

36

Figure 3.8 Simulation results for a sample model on Figure 3.7

www.manaraa.com

37

Figure 3.9 Successful attack trace with tracked places shown in blue

established by tracing all tokens that resulted in token being present at the root place. Since

every particular token table entry contains ID field, it is possible to identify all tokens that

were part of a successful attack. Trace starts with the token that is present at the root node,

and recursively looks for tokens that lead to it. For example, token at root place was result of

firing of T11 by two tokens present at place P19.

3.4.4 Security Evaluation of Survivability and Defense Strategies

Although developing a representative model of system or attacker behavior might seem to

be main goal of PENET Tool, ultimate goal of PENET Tool is to enhance the survivability of

the modeled system.

Simulation Results window provides means for victim party to evaluate survivability, vali-

date system security, and evaluate employed defense strategies. Performance metrics provide

quantitative material necessary for such analysis. It is obvious that secure system has no com-

promises at root goal place and limited number of sub-goals compromised (the more sub-goals

were compromised, the system is less secure).

The user can vary parameters of PENET model that are of interest and influence, add new

www.manaraa.com

38

elements that improve defense, and compare with existing results. Once simulation is re-ran,

Simulation Results form will show new input and output (trace and performance metrics) for

easy tracking how changes have affected the outcome. Parameters of interest have significant

impact to performance metrics, and their value is influenced either by the attacker or the

victim. Beside modifying parameters, defense strategy can be improved by adding additional

valid repair places. As it will be shown in our TCP SYN case study (chapter 5), repair time

significantly affects survivability of a vulnerable system.

Evaluation process can be performed systematically, and repeated if necessary until results

are satisfactory. The evaluation and validation procedure is shown in Algorithm 2.5. From

this algorithm it can be seen that process is essentially iterative.

www.manaraa.com

39

CHAPTER 4. PENET TOOL DESIGN AND IMPLEMENTATION

4.1 Introduction

In this chapter focus will be given to internal design of PENET Tool. For easier under-

standing of design, the internal design will be described on the logical level, rather than on

the code level. In a nutshell, PENET Tool is event-driven application where actions result of

user interactions with applications user interface. In that sense, user operates on front-end

consisting of various windows forms, and back-end of application performs various calculations

and support for front-end.

To meet applications goals, various data structures are being used through the back-end.

Most distinguished data structure in application describes the PENET model, the set of Petri

net basic elements, constructs, parameters, and interactions. This structure is used by most

PENET Tool modules, for example as an input for the simulator. Externally, PENET model

data structure is converted to XML structure that manages to fully describe and capture the

PENET model.

4.2 Block Diagram of PENET Tool Architecture

Figure 4.1 shows various modules of PENET Tool and their interaction with each other.

Module interaction occurs in few different ways: the data could be shared between modules,

one module uses another, or there could be two-way communication. The major functional

modules are represented as larger and darker rectangles on Figure 4.1. By rule, minor modules

appear only as a part of major module, or represent data structure that is used by a major

module.

www.manaraa.com

40

Figure 4.1 Block diagram of PENET Tool internal structure

www.manaraa.com

41

4.2.1 XML modules

Primary purpose of XML modules is to provide permanent storage of created PENET

models. Thus, PENET models created in graphical editor will be stored as XML files. XML

format was chosen due to its ability to fully describe structure, relationship between elements,

and parameters of any PENET model. XML Parser module is used for two-way conversion

between XML file and data structures that are friendlier for further data manipulation. XML

Schema [23] is template that fully defines PENET model. As already mentioned, XML format

is able to fully capture the PENET model. This is accomplished by well-defined XML schema

file. Thus, this schema file contains definition for places, transitions, arcs, and all their prop-

erties and relationships. XML schema was created using XML Schema Definition Language

(XSD) and XML Designer [24]. Figure 4.2 shows XML schema in XML Designer. Further,

XML schema file is used as a template for every creation or opening of the XML files that

represent PENET model.

However, XML file is difficult to manipulate with in a native form. Application uses specific

PENET model data structure for all internal purposes, aside of saving to permanent storage.

4.2.2 PENET Model Data Structure

The PENET model data structure (Figure 4.1) consists of definitions for each basic element

(Place, Transition, Arc), and structures and relationships that are necessary to describe their

interactions in the overall PENET model. Firing Info structure provides information about

requirements for transmission firing, and information about result of transition firing. Token

Table structure is used to keep track of individual tokens at each place. This is fundamental

for ensuring that token progress is kept accurate.

As it can be seen from Figure 4.1, PENET model data structure is widely used in PENET

Tool: it is input for performing simulations, XML Parser uses it to create the XML file, and

drawing engine uses its information for proper display of PENET model.

www.manaraa.com

42

Figure 4.2 Block diagram of XML schema that describes PENET model

www.manaraa.com

43

4.2.3 Drawing Engine

Drawing engine is a GDI+ based [25] control that provides drawing of PENET model on

the application’s main window. Drawing engine is one of most complex modules in the whole

application, thanks to rich set of implemented features. The GDI+ libraries provide means for

easy manipulation of graphics on the display devices. Drawing engine relies on information

in the PENET model data structure for providing up-to-date display of the PENET model.

Drawing engine has its own data structures for storing items that are drawn on the screen.

This includes information such as coordinates of elements, their color and shape, labels, token

colors, fill, etc. There is 1-to-1 mapping between full PENET model data and data structure

in drawing engine used to draw elements. Interestingly, arcs are not stored in drawing engine

but computed at run time using connected place and transition information which is sufficient

to draw any arc. This approach was used because 2D coordinates of an arc strongly dependent

of coordinates of place and transition connected by it. On the other hand, some actions

performed on graphics engine propagate to PENET model. For example, removing an element

on the diagram will invoke the removal of corresponding element in PENET model, and all

arcs connected to it (if removed element was place or transition).

4.2.3.1 Polymorphism in Drawing Engine

As already mentioned, drawing engine recognizes three types of elements: places, transi-

tions, and arcs. There are quite a few common actions and properties for each element. Each

can be drawn, moved, removed, renamed, and such. In object-oriented design, there is concept

of polymorphism that is strongly applicable to this situation. Applied to this case, it means

that all objects drawn using drawing engine can be stored in a single container and that for

majority of operations theres no need to examine type of the object. Additional benefit of us-

ing single container for all elements is that at run-time various elements are added to diagram

strictly by user choice. Utilization of polymorphism has led to a simplified design.

www.manaraa.com

44

4.3 Implementation of the Time Domain Analysis Algorithm

On block diagram of PENET Tool (Figure 4.1) it is evident that simulation module uses

data structure of PENET model as input for running simulations. The simulator closely

follows the PENET time domain analysis for single attack scenario in Algorithm 2.4. Thus,

all structures described in Algorithm 2.4 have been implemented.

Simulator introduces new data structures used for simulation purposes: Event, Priority

Queue, and Token Table. Event structure provides information about upcoming token arrival:

place of arrival, fired transition, and what are firing requirements and results of firing. Priority

Queue is used to sort events per their execution time. Priority Queue stores events in efficient

way that guarantees that extracted first element from queue (dequeuing operation) will be the

event with lowest start time. Token Table is structure that tracks progress of tokens. Each

place of PENET model has its own token table. Each token table entry contains information

about token arrival and leave times, color, and unique ID used for tracking purposes. Thus,

every token arrival will invoke creation of new token table entry. Figure 3.8 shows contents of

such table.

The simulator is event driven, in a sense that every transition firing and token generation

are represented as single event. Every such event may lead to new events, for example token

arrival at a place may enable firing of some connected transition. Thus, at every event incursion

at some place algorithm evaluates prospective firings of all connected transitions. Simulation

ends when there are no events left in queue, or if simulation time has expired.

Consider the situation when token arrival enables firing of multiple transitions. Based on

PENET approach, the transition with lowest delay would be one that is fired, and remaining

transitions would not fire. Transition with lowest delay has its own set of rules that might

change from satisfied to not satisfied before scheduled firing occurs. In this situation, sched-

uled firing event will not be realized, but other remaining prospective transitions have to be

rechecked. It is important to state that PENET Tool successfully handles such and even more

complex cases. These cases are further discussed in challenges section.

www.manaraa.com

45

4.3.1 Post-Simulation Analysis Implementation

Finally, last logical module of PENET Tool is post-simulation analysis. This module is

automatically invoked after successful simulation. Purpose of this module was described in

PENET Tool overview in previous chapter. Technically, it calculates performance metrics

and the trace for completed simulation. Both are acquired by analyzing the token table after

simulation has been completed. Number of root goal compromises is simply number of tokens

registered at the root place. Time to reach root goal is simply arrival time of first entry in

the token table. Number of sub-goals reached can be learned from last firing times of each

transition that is marked as a compromise transition.

Trace path is also obtained using token table entries. Because every token entry has its

own unique ID, it is possible to trace all firings and tokens that resulted in particular token at

root place. For this purposes, every token table entry was augmented with firing requirements

(that include unique token ID from input places) that have led to that entry.

4.4 Discussion of Challenges in Implementation of the PENET Tool

4.4.1 Complex Issues in Time Domain Simulator

In a event-based simulation, it might seem that events are linearly following each other in

time domain, with events occurring as scheduled. Unfortunately, that is not a case. Consider a

PENET model consisting of two AND events, shown on Figure 4.3. At time τ = 5, requirements

for firing transition T0 will be met, and firing would occur at τ = 5 + 10 = 15. However,

at time τ = 8, transition T1 becomes enabled, and it could fire at τ = 8 + 4 = 12, which is

before firing of transition T0. Thus, in correct time-domain analysis implementation T1 would

fire, and T0 would not fire at expected τ = 15, because token at place P1 would no longer be

available.

Now consider even more complex situation, as shown on Figure 4.4. To explain point, we

will assume that there is no periodic arrival of tokens. In this situation, based on arrival events,

transition T0 should fire at τ = 15, followed by T1 firing at τ = 12, and T2 firing at τ = 11.

www.manaraa.com

46

Figure 4.3 PENET model with an “anomaly“

Figure 4.4 PENET model with multiple ”anomalies“

T2 firing at τ = 11 will render T1 firing at τ = 12 invalid, but firing of T0 at τ = 15 should

occur.

From these two cases we can draw conclusion that event-based simulation has anomalies,

situations when events supersede other events and make them invalid and cancelled. Specifi-

cally, within transition delay time some other event can take one or more required tokens. In

other words, between transition enabling time and actual firing time other events can occur

that disturb order of events. These situations have to be properly handled by implemented

time-domain simulator.

Practically, to ensure that simulator works as desired in presence of such anomalies, two

steps must be taken:

• Simulator has to schedule all possible firings on token level, and

www.manaraa.com

47

• Firing requirements have to be re-evaluated when transition firing is due.

To explain the first step, consider the PENET model on Figure 4.3 again. At time τ =

10 there are two tokens at place P0, one at places P1 and P2, and new token arrives at place

P1. Thus, there are thee possible firings that need to be scheduled: two on transition T0, and

one at transition T1. And every token present at P0 has to be treated as a separate firing

possibility. Therefore, set of events (in a general case) will be generated as a consequence

of some single event. There could be multiple events from single enabled transition if there

are multiple tokens in required places. Also, if event enables other transitions, these will get

scheduled as well.

Second step is corollary of fact that only single firing will occur for whole set because set

has one common requirement. Once one transition has used the common requirement for its

firing, no other scheduled event from the set can fire. Thus, it is necessary to check at every

firing whether requirements are still met, and to cancel events with invalid requirements.

4.4.2 Analysis of Algorithms Convergence and Complexity

It is necessary to show that time-domain algorithm converges towards solution if provided

with valid input.

In this section, we will attempt to derive algorithm’s ability to converge. In this sense, the

important parameters are number of transitions nt in PENET model, initial number of events

generated from token arrivals at leaf places ne0, maximal input or output degree of any event

d. Note that every token arrival at some place is result of a single event. Also, acyclic PENET

model is model where there are no transition firing combinations that would result in event at

same place where they started.

From one event, in worst case nt · nd
e0 events can be created. Each of these events has one

common requirement, and that is the initial event that enabled possibility of new events to be

generated. Once one if these events has been processed, remaining events will not meet their

requirements. Thus, out of so many events created, only single transition will manage to be

fired, and it will remove all remaining events. This translates to rudimentary rule that each

www.manaraa.com

48

event generates at most d new events.

If every event would generate up to d new events, algorithm would not converge. However,

if PENET model is acyclic, every event propagates in direction towards root or repair place,

and places are not being reused. This means that there will be at most ne0 · nt · d! events

generated from initial ne0 events (that appear after token arrival events at leaf places have

been processed). Thus, minimum priority queue will contain at most ne0 · (1+nt ·d!) elements.

This puts bound on algorithms complexity and proves that algorithm will converge towards

solution in case that theres no cycles in PENET model.

In a case of a cyclic PENET model with delay time in cycle larger than 0, simulation

will run between time as if there were no cycles and maximum simulation time, depending of

individual parameters of PENET model. If PENET model contains cycles with delay equal to

0, such model is invalid.

We have been shown that algorithm will converge unless there are zero-delay cycles, and

that algorithms execution is efficient if there are no cycles. In case of existence of non zero-delay

cycles in PENET model, in worst case algorithm will run until specified simulation time.

4.4.3 Additional Limitations of Time Domain Analysis Algorithm

Although design desire is to make PENET Tool 100 percent deterministic, in some cases

there will be conflicting events occurring at exactly same time. In such case, there is no rule

which event will occur, and which ones will be cancelled. Existing implementation does not

consider this case, but mechanism could be added that recognizes such situations and notifies

user that result was not deterministic.

Second issue occurs in situations of large token accumulation at some place. Because time

domain algorithm evaluates every potential firing on individual token level, this will create

large set of potential events for some connected transition. As already described, only single

event will manage to fire, and requirements for remaining events in this set will not be met.

The issue is that large number of events in the priority queue will slow down execution of

the algorithm, regardless of fact that all but one event in newly created set will have unmet

www.manaraa.com

49

firing requirements. Data structures that store events in priority queue dynamically expand in

run-time. Every expansion is performed by copying all events in the structure. Ratio of events

generated to fired can be over 105 for simple case of three inputs AND gate and one place

with 100 tokens present. This results in algorithm execution slowdown due to processing large

number of invalid events. It is obvious that limit can be put in number of newly created events,

because most of them get eliminated anyway due to unmet requirements. Different approach

would be to create single event for whole set of mutually exclusive events, but even in this case

large number of requirements would be part of Event data structure. Decision was made to find

compromise between lower complexness and readability on one and performance improvement

on the other side. The actual implementation has heuristic cut-off in which events generated

at single firing are limited n = 1000. Experiments have shown that this cut-off does not affect

result in any way. In other words, it is safe to assume that 1000 event combinations based

on present tokens in input places are enough for single transition. Algorithm can be further

developed to optimize these cases without theoretical loss of precision.

www.manaraa.com

50

CHAPTER 5. CASE STUDY

In order to illustrate our Petri Net Attack Modeling approach, we will examine one of

most common distributed denial of service (DDoS) attacks based on TCP SYN abuse in a case

study. In this case study, we will describe the TCP SYN attack, and based on this description

we will generate attack model by utilizing our novel attack modeling approach. Then, analysis

methods defined in this thesis will be applied to generated PENET model. To obtain simulation

results for time domain analysis, we have used earlier discussed PENET Tool that contains

implementation of time domain analysis algorithm.

5.1 Model

The abuse, described in [15], works as follows (Figure 5.1). Initially, client (attacker in

case of the abuse) sends request to establish connection by sending SYN message to the server.

Server then responds with SYN-ACK message, and keeps half-open connection between itself

and the attacker, waiting for final ACK response from the client. To keep track of all half-open

Figure 5.1 Establishing TCP connection using SYN message

www.manaraa.com

51

Figure 5.2 PENET model for TCP SYN DDoS Attack

www.manaraa.com

52

connection, server stores in its memory list of all half-open connections. The attacker has

spoofed its source address (TCP protocol does not provide checking for validity of source of

the transmission), and server will never receive reply for its ACK message. As the server has

limited number of available connections, those connections will eventually fill up, and server

will be unable to service the legitimate users.

Figure 5.2 presents PENET model of described TCP SYN attack. Description of places

is presented in Table 5.1. The goal of intrusion attempt is to disrupt or affect regular service

utilizing TCP SYN DDoS attack. As it can be seen from Figure 5.2, model is structurally

divided into two separate entities. Each entity has to be compromised by attacker in order for

attack to succeed.

For simplicity reasons, and to illustrate attack patterns [8] often used in attack trees that

are applicable to PENET model as well, we have replaced first entity with three patterns,

shown on Figures 2.4, and 5.3.a and b. These patterns are not specific to TCP SYN abuse

and can be used for various purposes. Figure 5.2 shows how the patterns were instantiated as

places 1.1, 1.2.1 and 1.2.2.

Sub-goal 1.1, represented by attack pattern on Figure 5.3.a depicts intrusion attempts that

have goal of acquiring relevant information about victim of the attack: internal network con-

figuration, operating system of target server, whether it is susceptible to known vulnerabilities,

and such.

Sub-goal 1.2 is represented by attack scenarios on Figure 5.3.b (goal 1.2.1) and Figure 2.4

(goal 1.2.2). Botnet Recruiting Attack Pattern (Figure 5.3.b) models the ability of attacker

to recruit zombie (also known as slave, agent, bot) machines that will amplify the attack or

make it possible. The attacker first needs to obtain a list of machines that are vulnerable to be

taken over (1.2.1.1 sub-goal), and then exploiting known vulnerabilities or injecting them with

viruses, Trojan horses or worms gain root access (1.2.1.2 sub-goal). The number of machines

in botnet is not arbitrary, but significantly large number of nodes in botnet is required for

DDoS attack to have negative impact on victim’s service. We model this requirement with

1.2.1.3 (Sufficient Number of Hosts in Botnet).

www.manaraa.com

53

Figure 5.3 PENET Patterns a) Acquire relevant victim info pattern b)
Compromise network and/or resources pattern

Figure 5.4 PENET model of most likely attack scenario

www.manaraa.com

54

However, it is not necessary to use agent machines to perform TCP SYN DDoS attack;

same effect can be created using reflector routers [15] that will amplify effect of false SYN

requests by forwarding them to the victim. In this case, attacker has to follow similar path as

in botnet recruitment. First, prospective routers need to be located, and then they need to be

assigned to bot network. Finally, when satisfactory number of such routers is found, attacker

has accomplished his subgoal of creating reflector router network. This is modeled by reflector

routers attack pattern shown on the Figure 2.4.

Second entity on Figure 5.2 captures specifics of TCP SYN attack. Based on acquired

information in other two sub-trees, attacker decides what kind of attack to perform. If he/she

knows for that target is not vulnerable to TCP SYN attack, decision will be made to try

brute-force DDoS attack that is not as refined as classic one, but instead relies on brute-force

[16]. For TCP SYN attack to succeed, victim has to be vulnerable to TCP SYN abuse (1.3.1.2

goal), and volume of abuse generated must reach critical level that accomplishes desired effect

of attack. Volume of abuse is modeled with Attack Amplifier Requirements (1.3.1.1 sub-goal).

Therefore, for attacker to achieve desired effect, the disruption in connection queue, he

must compromise both parts of PENET model, where right part is specific to this attack, and

left one instantiates attack patterns. The desired effect of attack is to compromise ability of

victim to service legitimate users. As a impact of attack to victim, its network bandwidth,

processing power, or response time will deteriorate; or in worst case, service will be unavailable.

5.2 Analysis of Presented Model

The first goal in analysis is to find most likely scenario, in other words to find leaf places

that produce lowest Attack Scenario Index DI. Parameters are assigned as shown on table 5.1.

These parameters are cost of arrival AC and chance of success AP. Based on this information,

most likely attack scenario involves following leaf places: 1.1.2.1, 1.2.1.1.3, 1.2.1.2.3, 1.2.1.3,

1.3.1.1.1, 1.3.1.2, and 1.3.1.3.

The DC, DP and Attack Scenario Index DI values for this attack scenario are:

www.manaraa.com

55

Table 5.1 Description of Figure 5.2 with assigned parameters

Place Place name Cost of Chance of

index arrival AC success AP

1.1 Acquire relevant victim info

1.1.1 Target host vulnerability scans 1K 0.1

1.1.2 Locate servers

1.1.2.1 Automatic scanning 100 0.1

1.1.2.2 Intelligence information 100K 0.9

1.2 Compromise network and/or machine resources

1.2.1 Recruit multiple machines in botnet

1.2.1.1 Obtain list of zombie machines

1.2.1.1.1 Random scanning 1K 0.001

1.2.1.1.2 Signpost scanning 5K 0.01

1.2.1.1.3 Hit list scanning 10K 0.1

1.2.1.2 Take advantage of vulnerable machines

1.2.1.2.1 Virus infections 100 0.01

1.2.1.2.2 Worm infections 100 0.01

1.2.1.2.3 Operating system vulnerabilities 100 0.05

1.2.1.2.4 Trojan horse infections 10 0.02

1.2.1.3 Sufficient number of hosts in botnet 10K 0.1

1.2.2 Achieve usability of reflector routers 200.1K 0.0001

1.3 SYN abuse by attacker

1.3.1 SYN attack requirements

1.3.1.1 Attack amplifier requirements

1.3.1.1.1 Sufficient number of 100 0.3

hosts in botnet for TCP SYN

1.3.1.1.2 Sufficient number of reflector routers for TCP SYN 1000 0.01

1.3.1.2 Victim is prone to TCP abuse 1K 0.3

1.3.1.3 Master attacker decision: TCP SYN 0 1

1.3.2 Brute force attack requirements

1.3.2.1 Sufficient number of hosts in 1K 0.1

botnet for TCP SYN

1.3.2.2 Victim is prone to brute force abuse 10K 0.9

1.3.2.3 Master machine decision: brute-force DDoS 0 1

www.manaraa.com

56

DC =
6∑

j=0

ACj = 21.3K$

DP =
6∏

j=0

APj = 4.5 · 10−6

DI =
DC

DP
=

21.3K$
4.5 · 10−6

= 4.73G$

In time domain analysis, we will utilize the PENET model of attack scenario shown on

Figure 5.4. First step is to recognize parameters that will influence the outcome the most, that

are also controlable (to higher or lesser degree) by attacker or by victim. Compromise time c

= c1121 at transition that fires the place 1.1.2.1 is significant factor because it is de-facto the

entry point of the attack, and both attacker and victim can influence this delay time. Second

parameter of choice is clearly repair time. Note that repair time is not present at all places;

victim does not have repair capabilities on systems that are external to him, such as botnet

network.

Colors (red and green) were used for proper modeling of priority AND construct. PENET

parameters aj and cj were obtained from Table 5.1. Cost of arrival ACj was transfered to

periodic arrival time aj by dividing each value with constant k = 100 that gives arrival time of

a = 1 hour to leaves with lowest cost of arrival. Similarly, compromise times cj were calculated

as reciprocal values of chances of success ACj . Also, it was assumed that attacker performed

attacks on leaf places in duration of τ = 80 hours.

Figures 5.5, 5.6, and 5.7 show defined performance metrics for varying repair time r and

parameter c=c1121.

5.3 Results

5.3.1 Time to root place

Figure 5.5 shows dependence of time to compromise root place of repair r and compromise

c times. Initially, small values of compromise time c do not influence the outcome because

other compromise times in PENET model play dominant role. As compromise time on place

www.manaraa.com

57

Figure 5.5 Time to root place compromise for TCP SYN model

Figure 5.6 Number of root goal compromises for TCP SYN model

www.manaraa.com

58

Figure 5.7 Number of subgoals compromised for TCP SYN model

Figure 5.8 Number of root goal compromises for TCP SYN model for vari-
able arrival time a1121

www.manaraa.com

59

1.1.2.1 increases beyond other compromise times in PENET model, it becomes dominant so

the time to compromise root place starts to linearly increase with c. Also, graph shows that

repair time only influence whether attack will succeed or not.

5.3.2 Number of root goal compromises

From Figure 5.6 we can conclude that compromise time c plays less important role compared

to repair time r, when it comes to successful attack. Although number of compromises decreases

as the compromise time increases, root place compromises terminate completely for small

enough repair time (2 or less hours). As expected, when no repair capabilities exist (represented

by infinite repair time), number of root goal compromises would not change regardless of

compromise time.

5.3.3 Number of subgoals compromised

Figure 5.7 shows number of subgoals reached for various values of parameters c and r. The

maximum number of subgoals reached is 11, which includes root goal. As we have seen from

Figure 5.6, for small enough repair time attacker will not manage to reach root place. In these

cases, attacker manages to compromise between 4 and 7 subgoals.

5.3.4 Effect of repair time

From all three diagrams, we can conclude that repairability and its promptness play crucial

role in keeping the system safe from TCP SYN attack. The attacker has no means to penetrate

system beyond few subgoals if repair is fast enough, in this particular case repair times r of

2 hours or less provide defense strategy that ensures survivability of a system, regardless of

attacker’s ability to decrease compromise time at the entry point.

5.3.5 Effect of arrival time

Figure 5.8 shows case when arrival time at place 1.1.2.1 was parameterized. Unlike other

simulations, here compromise time c1121 was set to constant value of c1121 = 10, and arrival

www.manaraa.com

60

time a1121 varies from 1 to 10 hours. We kept repair time to r = 8 hours. This situation

models attacker’s strategy to increase intensity of attacks, in such way that attacks on place

1.1.2.1 occur more often. Simulation output nicely illustrates struggle between attacker and

victim on the single resource: as soon as attacker gives enough time for repair (a1121 of 8 or

more hours), victim is able to timely repair compromise before it reaches root goal.

www.manaraa.com

61

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this work, we have presented PENET, new attack modeling approach based on timed

Petri nets. First objective of our modeling approach is to provide more precise quantitative

parameterization and advanced modeling capabilities compared to attack trees, while keeping

their intuitive features and simplistic approach. Second objective of PENET approach is to

provide modeling tool that aids user in enhancing the system survivability.

The new modeling approach tries to find balance between complex stochastic models and

static models such as attack trees. The weakness of many stochastic models is assumption

that attack behavior follows exponential distribution. This assumption has no foundation in

existing research. We have avoided such approach by using three simple timed delays to model

attacker behavior. Attack trees’ main weaknesses are subjective assignments of component’s

values, static model without notion of repairability, and limited modeling capabilities.

PENET model was defined using deterministic time transition Petri nets. Using quantita-

tive parameters that model compromise, periodic arrival, and repair times we have provided

means to create finer model of a vulnerable system. We have extended modeling capabilities by

providing additional constructs, such as dependability and sequential constructs, while leaving

open door for additional constructs that are possible due to modeling power of Petri nets. Ad-

ditionally, we provided performance metrics to evaluate various aspects such as survivability

of the system, total cost of attack scenario, and effectiveness of victim’s repair efforts.

We have provided two analysis approaches for solving and simulating the created model.

First analysis method produces attack scenarios and survivability indexes similarly to attack

trees [4]. Second analysis method is a unique way to analyze survivability of a system in a time

domain, employing novelty of our approach, such as new constructs and new delay times that

www.manaraa.com

62

quantitatively describe them. The output of this analysis tells us whether attacker will be able

to reach root goal, at what time, what subgoals were accomplished, and how effective were

repair efforts. We managed to provide dynamic sense what goes on during attack during its

lifetime. The proposed approach follows Morda assessment process steps [10]. Finally, through

case study, we have shown these concepts at work.

With concept of reccuring attack, we recognized new issue of optimization of defense or

attacker investment. This problem can be formally stated as how to identify critical elements

and utilize funds in recurring effort so the penetration is minimized or maximized. For other

modeling techniques, where there is no notion of reoccurrence, this problem is simpler.

Finding objective way to assign probability of attack success remains significant issue for

any attack modeling effort. PENET approach captures probability of attack success to three

parameters: compromise, arrival, and repair rates. This approach is a step forward in resolving

the issue of how to objectively, without subjectivity, assign probability of attack events. Some

other authors [19] have decomposed this probability into set of attributes such as probabilities

of being attacked, perimeter breach, being on attacker target list, etc. Related to this problem

is problem of finding probability distribution of attacker behavior. Although Jonsson et al.

[20] has provided significant effort, more research is necessary to obtain plausible results. Such

results will open door for new modeling techniques that carry increased precision in comparison

to existing ones.

Although cyber attacks are common, most modeling approaches do not utilize real-world

attack data. Instead, researchers often use either simple cases to illustrate models, or they

build generic models based on available information. Using real-world systems and attacks in

developed models would be extremely beneficial to capture strengths and weaknesses of any

attack modeling approach. Our approach would be more meaningful if it could be applied to

an actual vulnerable system.

Another research effort that involves cyber security focuses on interaction between physical

and cyber worlds during attack. In this area, researchers study consequences of cyber attacks

on some critical infrastructures such as power plant system. Petri nets could prove useful in

www.manaraa.com

63

this scenario as a tool that is capable of modeling both physical and cyber worlds, and their

interactions.

The proposed PENET attack modeling can be combined with attack trees to form a hybrid

model of attack trees and Petri nets. Such model would appear as attack tree, with some

constructs and events that cannot be modeled by attack trees represented with PENET model.

The advantage of such model is it captures the sophistication of a PENET model and the

simplicity of attack trees in an integrated manner.

www.manaraa.com

64

BIBLIOGRAPHY

[1] Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s journal, December

1999.

[2] Dalton, G.C., II; Mills, R.F.; Colombi, J.M.; Raines, R.A., Analyzing Attack Trees using

Generalized Stochastic Petri Nets, 2006 IEEE Information Assurance Workshop , vol.,

no.pp. 116- 123, June 21-23

[3] Higuero, M.V.; Unzilla, J.J.; Jacob, E.; Saiz, P.; Aguado, M.; Luengo, D., Application

of ’attack trees’ in security analysis of digital contents e-commerce protocols with copy-

right protection, Security Technology, 2005. CCST ’05. 39th Annual 2005 International

Carnahan Conference on , vol., no.pp. 57- 60, 11-14 Oct. 2005

[4] Casey Fung; Yi-Liang Chen; Xinyu Wang; Lee, J.; Tarquini, R.; Anderson, M.; Linger,

R., Survivability analysis of distributed systems using attack tree methodology, Military

Communications Conference, 2005. MILCOM 2005. IEEE , vol., no.pp. 583- 589 Vol. 1,

17-20 Oct. 2005

[5] Bistarelli, S.; Fioravanti, F.; Peretti, P., Defense trees for economic evaluation of security

investments, Availability, Reliability and Security, 2006. ARES 2006. The First Interna-

tional Conference on, vol., no.pp. 8 pp.-, 20-22 April 2006

[6] Sallhammar, K.; Helvik, B.E.; Knapskog, S.J., Towards a stochastic model for integrated

security and dependability evaluation, Availability, Reliability and Security, 2006. ARES

2006. The First International Conference on, vol., no.pp. 8 pp.-, 20-22 April 2006

www.manaraa.com

65

[7] Madan, B.B.; Gogeva-Popstojanova, K.; Vaidyanathan, K.; Trivedi, K.S., Modeling and

quantification of security attributes of software systems, Dependable Systems and Net-

works, 2002. Proceedings. International Conference on, vol., no.pp. 505- 514, 2002

[8] Moore, A.P., R.J. Ellison, and R.C. Linger. Attack modeling for information security and

survivability. Software Engineering Institute Technical Report CMU/SEI-2001.

[9] Wang, Jiacun. Timed Petri Nets: Theory and Application. Kluwer Acadamic Publishers,

USA, 290 pages, October 1998.

[10] Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, James Wallner, Risk-

based Systems Security Engineering: Stopping Attacks with Intention, IEEE Security and

Privacy, vol. 02, no. 6, pp. 59-62, 2004.

[11] Dugan, J.B.; Bavuso, S.J.; Boyd, M.A., Dynamic fault-tree models for fault-tolerant com-

puter systems, Reliability, IEEE Transactions on, vol.41, no.3pp.363-377, Sep 1992

[12] David M. Nicol, William H. Sanders, Kishor S. Trivedi, Model-Based Evaluation: From

Dependability to Security, IEEE Transactions on Dependable and Secure Computing, vol.

01, no. 1, pp. 48-65, Jan-Mar, 2004

[13] J. Bloom, C. Clark, C. Clifford, A. Duncan, H. Khan, M. Papantoniou, T. Barnwell, M.

Camacho, M. Cook, M. Gready, P. Kyme, and M. Tsouchlaris, PIPE, Imperial College

DoC Group Project, 2004.

[14] McDermott, J. P. Attack net penetration testing. In Proceedings of the 2000 Workshop on

New Security Paradigms (Ballycotton, County Cork, Ireland, September 18 - 21, 2000).

[15] Haining Wang; Danlu Zhang; Shin, K.G., Change-point monitoring for the detection of

DoS attacks, Dependable and Secure Computing, IEEE Transactions on, vol.1, no.4pp.

193- 208, Oct.-Dec. 2004

www.manaraa.com

66

[16] Mirkovic, J., Martin, J., and Reiher, P. A Taxonomy of DDoS Attacks and DDoS Defense

Mechanisms, Los Angeles, CA, University of California Computer Science Department,

2001.

[17] M. Ajmone Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri nets

for the performance analysis of multiprocessor systems, ACM Trans. Computer Syst., vol.

2, no. 1, May 1984.

[18] Tridandapani, S.; Somani, A.K.; Sandadi, U.R., Low overhead multiprocessor allocation

strategies exploiting system spare capacity for fault detection and location, Computers,

IEEE Transactions on, vol.44, no.7pp.865-877, Jul 1995

[19] McQueen, M.A.; Boyer, W.F.; Flynn, M.A.; Beitel, G.A., Quantitative Cyber Risk Reduc-

tion Estimation Methodology for a Small SCADA Control System, System Sciences, 2006.

HICSS ’06. Proceedings of the 39th Annual Hawaii International Conference on, Vol.9,

Iss., 04-07 Jan. 2006 Pages: 226- 226

[20] Jonsson, E.; Olovsson, T. A quantitative model of the security intrusion process based on

attacker behavior, Software Engineering, IEEE Transactions on, Vol.23, Iss.4, Apr 1997

Pages:235-245

[21] Microsoft Corporation, .NET Framework Development Center.

http://msdn2.microsoft.com/en-us/netframework/default.aspx. 2007

[22] World Wide Web Consortium, Extensible Markup Language (XML).

http://www.w3.org/XML/. 2003

[23] World Wide Web Consortium, XML Schema. http://www.w3.org/XML/Schema. 2007

[24] Microsoft Corporation, Introduction to XML Schemas (XML Designer.

http://msdn2.microsoft.com/en-us/library/efc70bx3(VS.80).aspx. 2007

[25] Microsoft Corporation, About GDI+. MSDN Documentation. 2005

www.manaraa.com

67

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest thanks to professor Dr. Mani-

maran Govindarasu for many years of his dedicated involvement, guidance and support in my

research and professional development. Without his ideas, suggestions, and feedback this work

would not see light of the day. Also, many thanks to professors Daji Qiao, Hridesh Rajan, and

Check-Ching Liu that were involved in many ways in the reseach that produced this thesis.

Additionally, I would like to express warm thanks to my parents Spasoje and Velinka Pudar,

and friend Mr. Pavle Ubiparipovic for their support and belief in me.

Finally, I would like to express thanks to fellow graduate students Kavitha Balasubra-

manian, Sudha Anil Gathala, Mohammad Fraiwan, and Chee-Wooi Ten for their valuable

contributions and suggestions through my research endeavors.

	2007
	A pragmatic method for integrated modeling of security attacks and countermeasures
	Srdjan Pudar
	Recommended Citation

	tmp.1429040886.pdf.pJax8

